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Abstract

A new, approximate block Newton (ABN) method is derived and tested for the
coupled solution of nonlinear models, each of which is treated as a modular, black
box. Such an approach is motivated by a desire to maintain software flexibility without
sacrificing solution efficiency or robustness. Though block Newton methods of similar
type have been proposed and studied, we present a unique derivation and use it to sort
out some of the more confusing points in the literature. In particular, we show that
our ABN method behaves like a Newton iteration preconditioned by an inexact Newton
solver derived from subproblem Jacobians. The method is demonstrated on several
conjugate heat transfer problems modeled after melt crystal growth processes. These
problems are represented by partitioned spatial regions, each modeled by independent
heat transfer codes and linked by temperature and flux matching conditions at the
boundaries common to the partitions. Whereas a typical block Gauss–Seidel iteration
fails about half the time for the model problem, quadratic convergence is achieved by
the ABN method under all conditions studied here. Additional performance advantages
over existing methods are demonstrated and discussed.
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1 Introduction

There has long been interest in efficient and flexible techniques for coupling systems of equa-
tions that are solved in some segregated fashion. The most powerful techniques are those
that can be applied when the equations are solved by black box computer codes that allow
no intervention in their algorithms. This opens the possibility to orchestrate the actions of
two or more computer codes to solve problems of greater complexity than is possible using
the codes individually. Such methods can be used to link together existing best-in-class tools
to tackle complex multiphysics and multiscale problems, without requiring extraordinary
programming effort. In addition, such methods can be also be used within a single code,
when it proves advantageous over solving the global set of equations in some integrated
manner.

One type of application arises when physical problems in non-overlapping domains are
coupled through interactions at their common boundary. A typical example is the fluid-
structure interaction problem, in which the fluid and structure equations are solved sep-
arately from one another, subject to boundary conditions that represent self-consistent
matching of forces and displacements at the fluid-structure interface [1–4]. Another exam-
ple of this type is a conjugate heat transfer problem studied in our earlier work [5–8], in
which a furnace radiation model is coupled to a melt crystal growth model via temperature
and flux matching conditions. The situation is illustrated in Figure 1. This example plays
a central role in the work presented here.

A different type of application is the segregated calculation of multiphysics within a
common domain, illustrated by a transport-reaction problem in which species, temperature,
and flow equations are each solved independently, but are coupled through reaction source
terms and temperature-dependent properties [9, 10]. This approach facilitates building
a complete physical model from a library of submodels [11]. Although we do not treat
examples of this type, the method used here is quite general and equally applicable to such
problems.

Another completely different type of application arises when a set of equations repre-
senting a physical problem is subjected to constraint equations that are necessarily solved
separately. In this way arclength and other constrained parameter methods, as well as con-
strained optimization, can be imposed in situations where it is not possible to modify the
means of solving the physical problem to include the desired constraints. Chan [12], whose
work plays an important role in this paper, developed an early and innovative way to tackle
this type of application.

Other motivations exist. Artlich and Mackens [13] solve a transport-reaction problem
of two variables on a common domain that are coupled through an integral term, which
introduces dense blocks to an otherwise sparse global Jacobian. To avoid forming these
dense blocks, they developed a segregated solver approach based on a problem splitting
that preserves sparsity of the Jacobians of the subproblems. The effect of the integral term
is isolated to an outer, fixed-point iteration.

The block Gauss–Seidel (BGS) method, with its back-and-forth character, is the most
intuitive and conceptually simplest way to link two computer codes to solve a coupled
problem, and is widely used for this reason. But the method performs poorly under many
conditions, particularly the conjugate heat transfer examples studied in [7, 8], so we seek
an alternative. A superior family of methods has been developed that approximates a
Newton iteration on the coupled system of equations using the solvers of the individual
systems. Notable examples include the Approximate Newton Method of Chan [12], the
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Iterative Approximate Newton method of Artlich and Mackens [13], the Tangential Block
Newton method of Menck [14], and the Approximative Block-Newton Method of Matthies
and Steindorf [15]. These methods, which appear to originate with Chan’s ANM paper [12],
are quite similar to one another in their mechanics. All of them begin with a block Jacobi
or Gauss–Seidel step, and so can be thought of as accelerators to the basic iteration. The
implementations vary, however, with some more general than others.

We draw upon this family of methods to seek a general form, which we label simply
the Approximate Block Newton (ABN) method. Below, we state concisely a practical
implementation of the method that is completely general, provided that the information
needed to effect the coupling can be extracted and exchanged between the solvers. The
method bears strong similarities to the methods mentioned above, but we demonstrate
some clear performance advantages of our ABN method.

In the sections to come, we provide an original derivation that sheds light on key re-
lationships and differences among these closely related methods. In particular, we show
that methods of this type behave like a Newton iteration preconditioned by an inexact
Newton solver based on the subproblem Jacobian matrices. The preconditioner is incor-
porated directly into the formulation of the method, which yields a well-conditioned Schur
complement-type problem that can easily be solved using an iterative linear solver without
further preconditioning. We also discuss various ways of iterating on a transformed set
of variables, rather than the primitive variables of the subproblems. This issue has been
glossed over in previous works, yet is essential to understanding practical implementation
of the method.

Our method is demonstrated on a problem in melt crystal growth that is partitioned into
furnace and growth chamber regions that are modeled by independent heat transfer codes;
these are linked by temperature and flux matching conditions at the boundaries common
to the partitions. Whereas a typical block Gauss–Seidel iteration fails about half the time
for this model problem, quadratic convergence can be achieved by the ABN method under
all conditions studied here. Both one- and two-dimensional examples are considered. The
results demonstrate that the ABN method is robust and efficient for problems of this type.

2 Coupled nonlinear models and fixed-point iterations

We first motivate the various solution strategies to be discussed below by defining the
underlying problem of the coupling of two, nonlinear models. In this section and what
follows, matrices are denoted by boldface upper-case Roman letters and vectors by boldface
lower-case Roman letters. Other quantities are scalars unless noted otherwise. Subscripts
in boldface indicate differentiation, e.g. rx is a matrix of derivatives of a vector r(x) with
respect to x. Function evaluations are indicated by parentheses (·), and operations such as
multiplication and differentiation are denoted by square brackets, [·].

We seek the solution to the global, coupled problem

f(x,y) = 0 (1)

g(x,y) = 0 (2)

We assume that the subproblems f and g are segregated such that x is the solution to f ,
with y as input parameters, and y is the solution to g, with x as input parameters. It
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makes sense to rewrite the problem to indicate this situation:

f(x, ỹ) = 0 (3)

g(x̃,y) = 0 (4)

Variables carrying the tilde represent the coupling of one subproblem to the other.
For now we assume that the dependence of one subproblem on the solution to the other

subproblem is explicit, i.e. x and y can be substituted directly for x̃ and ỹ. In many cases,
however, coupling of the problems is expressed implicitly, as in

f(x, ỹ(y)) = 0 (5)

g(x̃(x),y) = 0 (6)

Each subproblem depends on a transformation of the other subproblem’s variables. This in-
troduces some complications, but since a function f(x, ỹ(y)) can always be written f(x,y),
much of the mathematical development below is unaffected, so we defer discussion of trans-
formed variables until Section 3.5.

We assume that black box solvers are available for each subproblem. We write the action
of these solvers in the form of a fixed point iteration:

x(k+1) = F(x(k), ỹ) (7)

y(k+1) = G(x̃,y(k)) (8)

The counter k is introduced with the expectation that these fixed point solvers will be used
within an iterative scheme to solve a coupled problem; these outer iterations are not to be
confused with any iterations occurring within the solvers themselves. The solution updates
given by these solvers can be written as

∆Fx(ỹ) = F(x(k), ỹ)− x(k) (9)

∆Gy(x̃) = G(x̃,y(k))− y(k) (10)

A subproblem is converged when its update falls below some suitably small tolerance. The
global problem is converged when the solutions to Equations (3) and (4) are consistent,
namely both subproblems are converged with x̃ = x and ỹ = y.

A fixed-point form is chosen to describe the subproblem solvers because of its generality.
Any iterative solver can be written in this form; specifically, for Newton iteration applied
to Equations (3) and (4) we have

FN (x(k), ỹ) = x(k) − f−1x (x(k), ỹ)f(x(k), ỹ) (11)

GN (x̃,y(k)) = y(k) − g−1y (x̃,y(k))g(x̃,y(k)) (12)

The essence of a fixed-point solver is very simple: the user provides some input parameters
to the solver, which returns an updated estimate of the solution to its subproblem. How
the solver does so is unimportant. A solver in this abstract sense can encompass the sum of
many algorithmic steps—whatever might be hidden inside a computer code, for example.
In many situations, access to the internal workings of a code is limited, leaving us unable
to obtain useful data that reside there, hence our use of the term ‘black box’ solver. To
broaden applicability, therefore, a coupling method should rely entirely on fixed-point forms
of the solvers, without the need to know any details such as residuals or Jacobians.
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We also note that the individual solvers could be iterated several times before updating
x̃ and ỹ, but conceptually this is redundant, since we can simply define these inner iterations
to constitute a single step of our abstract solver [12]. Then there is no need to reference
inner iterations, and k can be used to denote an outer iteration over which x̃ = x(k) and
ỹ = y(k) are updated, rather than an inner iteration over the individual solvers at fixed x̃
and ỹ. It is in this sense we will use the iteration counter from now on.

3 Solution strategies for coupled models

As laid out in the prior section, we adopt a fixed-point iteration strategy to solve for the
coupled, nonlinear problem of interest. We are then faced with an important decision on
exactly what type of iteration should be implemented. In the rather long ensuing discussion
on this matter, we present three different formulations, taking care to provide derivations
and comment on implementation issues. We also provide a section that focuses on historical
issues related to prior, similar implementations. We believe that this extended discussion is
warranted. The seemingly simple idea of coupling codes is fraught with practical challenges,
and the block Newton algorithms developed to address these challenges, though elegant,
are not simple.

3.1 The block Gauss–Seidel (BGS) method

The simplest type of coupling iteration involves repeated application of the update formulas,
Equations (9) and (10). Note that in these equations ∆Fx depends on ỹ and ∆Gy on x̃.
We have written this dependence explicitly to emphasize that these values must somehow
be chosen before evaluating the updates. If one step of each solver is taken with x̃ = x(k)

and ỹ = y(k), one iteration of the well-known Jacobi method is obtained. For the iterations
used here and in our prior efforts [5–8], a block form of the Gauss–Seidel method is obtained
by setting ỹ = y(k), solving for x(k+1), then setting x̃ = x(k+1) to solve for y(k+1). Hence,
the BGS method consists of sequentially solving each model, rewriting Equations (7) and
(8) as,

x(k+1) = F(x(k),y(k)) (13)

y(k+1) = G(x(k+1),y(k)) (14)

Note that there is still ambiguity within this algorithm, since a choice must be made about
the order in which these equations are solved. This issue is examined in practical terms for
several test problems in subsequent sections.

3.2 The approximate block Newton (ABN) method

Newton’s method is often the method of choice for solving nonlinear problems because of
the desirable properties of guaranteed convergence and quadratic rates of convergence for
initial guesses sufficiently close to the solution. However, Newton’s method requires the
formulation of the Jacobian matrix, whose components may not be accessible in a black
box solver, and its solution, which may be quite expensive. The approximate block Newton
method (ABN) discussed in this section is formulated to address these challenges while
providing a good approximation to a full Newton iteration for the entire, coupled problem.
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3.2.1 Derivation

In the interest of clarifying the big picture without getting bogged down in details, we take
a somewhat ad hoc approach here to derive the ABN method. A more thorough analysis
will be presented in the following sections. We begin, then, with a special case of Equations
(7) and (8):

x(k+1) = F(x(k), ỹ) = F(ỹ) (15)

y(k+1) = G(x̃,y(k)) = G(x̃) (16)

The right hand sides of the equations are taken to depend only on the parameters input
from the other subproblem, not on the internal variables iterated over by the subproblem
solver. One interpretation is that F and G are exact solvers of f and g [13]. In principle,
this result can always be attained by iterating each nonlinear subproblem to convergence
before exchanging coupling information with the other subproblem.

The central strategy employed in previous derivations of block Newton-type methods
[13–15] is to recast a fixed-point solver as a root-finding problem to be tackled by Newton
iteration. The manner in which this strategy is employed varies greatly, however. In terms
of the special case considered here, the root finding problem is given by setting x̃ = x(k+1),
ỹ = y(k), and substituting the first equation into the second to obtain:

y(k+1) = G(F(y(k))) (17)

(note that this is simply Gauss–Seidel iteration written in a compact form). Let us recast
this equation into residual form as,

r = y − G(F(y)) = 0 (18)

Solving this equation via Newton’s method computes an update ∆y.
The first challenge is to simply implement Newton’s method on Equation (18), since

we do not have access to the inner workings of either model and thus do not have direct
knowledge of a Jacobian matrix. Adopting a strategy similar to that employed by Artlich
and Mackens [13], we choose to solve Equation (18) using a Jacobian-free Newton-Krylov
(JFNK) [16] approach. Thus, the Newton step is given by the solution to

S∆y = −r (19)

where
S ≡ ry = I− ∂y[G(F(y))] (20)

Equation (19), which we will see later is of the Schur complement type, is solved using a
Krylov subspace-based solver such as GMRES or BiCGSTAB [17]. Solvers of this type are
advantageous for requiring only the product of S with a Krylov vector w, rather than S
itself. This product can be approximated by finite differences:

Sw = w − ∂y[G(F(y))]w ≈ w − 1

ε
[G(F(y + εw))− G(F(y))] (21)

where ε is a suitably small finite-differencing parameter.
Using the JFNK approach described above, we are able to solve for y via an approximate

Newton method that needs only information provided by the individual solvers F and G. In
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the course of solving for y, we also obtain a converged value of x determined from Equation
(15) by the evaluation F(y). Thus, all that is needed to solve for x and y by this method are
Equations (18) and (21), which can be computed using the current iterates of the solutions
and their fixed-point solvers, plus whatever machinery is needed to perturb and exchange
the solutions between solvers. This simplicity is essential if the method is to be applied to
black box computer codes.

Per the simplified scheme discussed at the start of this section, the full dependence of
the solver evaluations F and G on x and y can be reintroduced by substituting Equations
(7) and (8) for Equations (15) and (16), even though the steps in the current, ABN method
were derived from the latter, simplified equations. The justification for this generalization
will be provided in the ensuing sections.

The cost of implementing the ABN method is substantially larger than that of the BGS
method. To complete a single block Newton step, solver F must be executed 2 + NK

times and solver G must be executed 1 + NK times, where NK is the number of Krylov
vectors. The extra cost per iteration can be large, approximately NK times the cost of one
BGS iteration. However, there are several ways to mitigate the extra cost per iteration,
and results presented below demonstrate that the ABN method dramatically accelerates
convergence and is notably more robust than the BGS method for the conjugate heat
transfer problems studied here.

3.2.2 Implementation

Based on the outcome of the simplified analysis above, we propose the following approach
to solve for the general case of Equations (7) and (8). We refer to these procedures as the
ABN method.

The first step is to define

xF = F(x(k),y(k)) (22)

yG = G(xF ,y(k)) (23)

using the current iterates of the solution unknowns x(k) and y(k) and the fixed-point solvers.
Note that this is equivalent to an iteration using the block Gauss–Seidel approach. From
this point on, the method can be viewed as a correction to the BGS steps xF and yG , the
intent of which is to accelerate convergence.

Next, following the idea of finding the root for the Gauss–Seidel form of the coupled
problem, we define an appropriate residual and solve via Newton iterations. First, a residual
is computed

r = y(k) − yG (24)

for the Newton iteration:
S∆y = −r (25)

Equation (25) is solved for ∆y, using any Krylov subspace-based method, with the product
of S and Krylov vector w computed by the following steps:

p = F(x(k),y(k) + εw) (26)

Sw = w − 1

ε

[
G(p,y(k))− yG

]
(27)
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where ε is a small finite-differencing parameter. Note that S corresponds to the Jacobian
matrix defined by the residual of Equation (24). Owing to the application of the JFNK
method, defined by Equations (26) and (27) used with the Krylov solver, we need not know
the specific form of S.

Once ∆y has been computed, the block Newton updates are computed from:

y(k+1) = y(k) + ∆y (28)

x(k+1) = F(x(k),y(k+1)) (29)

and the ABN step is complete. The iteration is repeated by following the sequence of
computations starting with Equations (22) and (23). Convergence of the global problem is
attained when a chosen norm of either ∆y or r falls below a specified tolerance.

3.3 An alternative approximate block Newton (ABN-J) method

The prior discussions, though based around a specialized problem, were meant to demon-
strate the elegant ideas behind Newton-based methods for solving coupled models. Here we
present a more formal derivation that leads to a slightly different approximate block Newton
method. We call this the ABN-J method because it starts from a block Jacobi iteration,
whereas the ABN method starts from a Gauss–Seidel iteration. Following the derivation of
the ABN-J method, we formally show how the ABN method can be interpreted using the
same theoretical framework.

3.3.1 Derivation

If we return to the coupled problem, stated as Equations (1) and (2), and consider a
monolithic approach to its solution, we would write an exact Newton step as:[

fx fy
gx gy

] [
∆x
∆y

]
= −

[
f
g

]
(30)

where ∆x ≡ x(k+1) − x(k) and ∆y ≡ y(k+1) − y(k) are the solution update vectors and all
residuals and Jacobians are evaluated at (x(k),y(k)). If fy and gx are replaced by zeros,
a block Jacobi iteration is obtained with exact Newton iterations used on the subprob-
lems. Capturing the effect of these off-diagonal blocks, which represent the sensitivity of
one subproblem to the other, is critical to achieving desired Newton-like features, such as
accelerating convergence and improving robustness. However, according to our assumption
of not being able to access the internal workings of each solver, these blocks are unavail-
able and must be approximated using only the current iterates of the solutions and their
fixed-point solver updates, given in Equations (7) and (8) (or equivalently Equations (9)
and (10)).

For reasons that will soon become clear, we precondition the Newton step using the
Jacobian inverses of the subproblems:[

f−1x 0
0 g−1y

] [
fx fy
gx gy

] [
∆x
∆y

]
= −

[
f−1x 0
0 g−1y

] [
f
g

]
(31)

This preconditioner can be viewed as an inexact Newton step that transforms the matrix
closer to a diagonal form.
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Multiplication followed by block elimination gives:[
I C
0 S

] [
∆x
∆y

]
=

[
q
−r

]
(32)

with the following definitions: The Schur complement is given by

S ≡ I− g−1y gxC (33)

and its right hand side by
r ≡ s + g−1y gxq (34)

The remaining block matrix and vectors are given as

C ≡ f−1x fy, q ≡ −f−1x f , s ≡ g−1y g (35)

where q and s are equivalent to block Jacobi updates for the subproblems f and g, and the
matrix C represents a coupling of the subproblems.

We obtain the solution updates via block back-substitution, yielding:

∆y = −S−1r (36)

∆x = q−C∆y (37)

As in the prior simplified case, solving just the first of these, Equation (36), is the key
to computing the Newton step. Once ∆y is known, it is always possible to compute ∆x
directly, by using the subproblem solver F to compute x(k+1) with the updated solution y
as input. So, in practice, it is not necessary to solve Equation (37) directly (although it can
be done that way, if C is available, as in Ref. [12]).

We thus desire to solve the Schur complement problem, Equation (36), using the same
JFNK approach espoused before, but we encounter a problem. For the more general case
considered here, both S and r comprise the products of many unknown terms. We now
employ an approach similar to that used by Artlich and Mackens [13] to derive their IANM
method (for more on the IANM, please refer to Section 3.6.1). Namely, a Taylor expansion
of g with respect to x is used to apply finite differences to approximate the term gxCw
(cf. Equation 33), which arises from the multiplication of S by the vector w in forming the
Krylov subspace. We obtain

Sw = (I− g−1y gxC)w ≈ w +
1

ε
g−1y (x,y) [g(x− εCw,y)− g(x,y)] (38)

In a similar fashion, the Taylor expansion gxq ≈ g(x+q,y)−g(x,y) is applied to Equation
(34) to give us r of Equation (36)

r ≈ g−1y (x,y)g(x + q,y) (39)

after terms cancel. Here no finite differencing parameter is used (equivalent to setting ε = 1)
because x is perturbed by q, which is expected to be quadratically small.

Furthermore, the matrix-vector product Cw needed to compute g(x−εCw,y) in Equa-
tion (38) can be similarly approximated by applying finite differences to fyw (cf. Equation
35)

Cw = f−1x fyw ≈
1

ε
f−1x (x,y) [f(x,y + εw)− f(x,y)] (40)
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The three preceding equations are all that is needed to solve the Schur complement problem
using a JFNK approach. In keeping with our general goal, we seek to evaluate these
equations using only the general fixed-point solvers F and G. Clearly, this is not possible
as written above. However, the genius of their current form (from insight attributed to
Artlich and Mackens [13]) is that all products of multiple blocks of the global Jacobian in
the original equations (cf. Equations 33–35) have been significantly simplified using a single
block matrix multiplying finite-difference approximations involving only solver evaluations.
Significantly, these single blocks simply involve the Jacobian matrices of each subproblem.
Indeed, gy in Equations (38) and (39) and fx in Equation (40) are the Jacobian matrices
associated with Newton solves of each individual model, as represented in Equations (11)
and (12). Accordingly, we will use insight from the these fixed-point Newton formulas to
replace gy and fx with suitable approximations.

We first approach the approximation to Cw represented by Equation (40). We see by
rearranging Equation (11) that

f−1x (x,y)f(x,y) = x−FN (x,y) (41)

so the second term on the right hand side is readily computed using only an evaluation of
the solver. The first term is more problematic, however. Consider the fixed-point form of
the exact Newton solver evaluated at (x,y + εw):

FN (x,y + εw) = x− f−1x (x,y + εw)f(x,y + εw) (42)

Note in the above equation, the Jacobian inverse f−1x is evaluated at (x,y+εw) rather than
(x,y). Rearranged, this equation yields the relationship,

f−1x (x,y + εw)f(x,y + εw) = x−FN (x,y + εw) (43)

Now, if we claim that

f−1x (x,y)f(x,y + εw) ≈ f−1x (x,y + εw)f(x,y + εw) (44)

which is tantamount to substituting a secant step for an exact Newton step, we can employ
the above series of relationships to rewrite Equation (40) using the much simpler expression

Cw ≈ −1

ε

[
FN (x,y + εw)−FN (x,y)

]
(45)

that does comply with our stated goal of using only solver evaluations to compute needed
quantities.

The discrepancy introduced by the use of the secant approximation, Equation (44),
between these two approximations for Cw is given by subtracting the original Equation
(40) from the simpler Equation (45), which, to leading order in ε, is ≈ w[f−1x ]y[f + fyεw]. In
essence, this error is introduced by evaluating the Jacobian needed in Equation (40) at the
“wrong” location. The effect of this error is assessed by considering the size of both terms
as the solution is approached. Since the residuals f vanish quadratically at convergence, the
first error term, w[f−1x ]yf , is quadratically small about the sought-after solution. The second
term, εw2[f−1x ]yfy, is first order but can be made small by ε. Convergence at quadratic rates
can often be achieved with careful choice of ε, however.
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The derivation proceeds similarly for S and r. Substituting G from Equation (12) for the
exact Newton steps in Equations (38) and (39) and making a similar secant approximation
yields

Sw ≈ w − 1

ε

[
GN (x− εCw,y)− GN (x,y)

]
(46)

r ≈ y − GN (x + q,y) (47)

where q = FN (x,y) − x. The above two equations again achieve our goal of using only
solver evaluations in these approximations.

The same error considerations discussed with regard to Equation (45) apply to Equations
(46) and (47), except that secant error in Equation (47) is proportional to q rather than ε.
Although q vanishes quadratically near the solution, this error cannot be arbitrarily reduced
by control of ε. The significance of this error will be explored further in the following section.

In the derivations above, we have used the exact Newton forms of the model solvers,
given by FN and GN in Equations (11) and (12), to yield simplified approximations. This
approach is perfectly suitable, if, indeed, the solvers of the individual models are New-
ton methods. However, we desire to generalize this framework for any fixed-point solvers.
Conceptually, we do this by simply using F and G (rather than FN and GN ) in the above
formulas, irrespective of their form. An important corollary of this action is that the original
solution updates, given by Equations (9) and (10), must also be assumed to be represented
by their Newton-based analogs, namely that ∆Fx is equivalent to q and ∆Gy is equivalent
to s. These approximations should not degrade convergence provided these solvers compute
updates that are quadratically convergent for their respective subproblems. As Chan [12]
has noted, any contractive fixed-point solver can attain this requirement by repeated iter-
ation (we speak of the solver’s internal iteration here). With this stipulation, we can write
the method solely in terms of the current solution iterate, (x(k),y(k)) and general fixed-point
solvers F and G.

In terms of computational effort, the fixed-point solvers F and G must each be executed
a total of 2 +NK times per block Newton step of the ABN-J method, the same as the ABN
method for F , but one greater for G. The additional evaluation is the Jacobi-type step
G(x(k),y(k)) needed to evaluate Equation (46). The equivalent term in the ABN method
is provided by the Gauss–Seidel step already computed in Equation (23), giving the ABN
method a slight performance advantage.

Equations (45), (46) and (47) form the foundation of the approach that we term the
ABN-J method. The basis of this name refers to the starting point for deriving this formu-
lation, which is a Jacobi step rather than the BGS step that started the ABN method. We
provide additional insight between the ABN and ABN-J methods in Section 3.4.

3.3.2 Implementation

The ABN-J method is carried as follows. With current iterates of the solution unknowns
x(k) and y(k) and the fixed-point solvers, we compute

q = x(k) −F(x(k),y(k)) (48)

which is used to compute a residual

r = y(k) − G(x(k) + q,y(k)) (49)
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for the Newton iteration:
S∆y = −r (50)

Equation (50) is then solved for ∆y, using a Krylov subspace-based method. The product
of the Schur complement S and Krylov vector w is computed by the following relations:

Cw = −1

ε

[
F(x(k),y(k) + εw)−F(x(k),y(k))

]
(51)

Sw = w − 1

ε

[
G(x(k) − εCw,y(k))− G(x(k),y(k))

]
(52)

where ε is a small finite-differencing parameter.
With ∆y computed, we compute updates as:

y(k+1) = y(k) + ∆y (53)

x(k+1) = F(x(k),y(k+1)) (54)

completing an iteration by the ABN-J method. Subsequently, iterations are carried out
until convergence.

3.4 The ABN and ABN-J methods compared

The ABN and ABN-J methods differ only in the approximation employed to compute
the product of the Schur complement and Krylov vector Sw in Equation (27) for ABN
and Equation (52) for ABN-J. To allow for a direct comparison of these expressions, we
represent each below after some substitution and rearrangement of terms:

[Sw]ABN = w − 1

ε

[
G(p,y(k))− G(xF ,y(k))

]
(55)

[Sw]ABN-J = w − 1

ε

[
G(p + x(k) − xF ,y(k))− G(xF + x(k) − xF ,y(k))

]
(56)

where p = F(x(k),y(k) + εw) and xF = F(x(k),y(k)) as defined originally in the ABN
algorithm.

From these expressions, we see that the only difference is the location at which the
function G is evaluated. Noting that q = xF − x(k), we see that the ABN-J expression,
Equation (56), is evaluated at an x-value that is shifted by a factor of−q from that employed
by the ABN. This shift is another error that arises from the secant approximations that
were made in the derivation of the ABN-J method; see, e.g., Equation (44). Nevertheless,
this discrepancy vanishes quadratically, and the methods are equivalent to one another at
convergence.

A final observation comparing these approaches is compelling. Considering the rather ad
hoc manner in which the ABN method was derived in Section 3.2, it may be surprising that
the formally-derived ABN-J method is nearly identical in form (except for the difference
noted above). To explain this fact, we return to the starting point of the ABN derivations,
Equations (15) and (16), where each subproblem is assumed to depend only on the variables
of the other problem. This assumption may not be as restrictive as it might initially appear.
For example, if F and G are affected only to second-order by x(k) and y(k), respectively, our
starting assumption is perfectly valid, since only first-order interactions are subsequently
considered in the ensuing derivation. Notably, this will be the case when each solver is based
on a Newton solver, an assumption that is used to derive the approximations employed in
the ABN-J method.
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3.5 Transformed variables

Each subproblem consists of some internal variables, x or y. These primitive variables do
not necessarily correspond to the input parameters x̃ or ỹ required by the other subproblem.
Often the parameters to one subproblem will be derived from the other subproblem by a
transformation, i.e. x̃(x) or ỹ(y). Equations (7) and (8) can be rewritten in terms of these
transformed variables:

x(k+1) = F(x(k), ỹ(y(k))) (57)

y(k+1) = G(x̃(x(k)),y(k)) (58)

In many situations, such as dividing a multiphysics simulation on a common domain among
different black box solvers, an interpolation between grids of the respective subproblems
is the only transformation that is needed. In other situations, a transformation changes
the physical meaning of a variable, e.g. one subproblem computes the temperature, but the
other subproblem requires its heat flux instead. Since F(x, ỹ(y)) can always be denoted
F(x,y), these transformations do not affect the validity of the ABN equations presented
above. The presence of such transformations can have an impact on how best to implement
the method, however, particularly if working with black box computer codes.

Under some scenarios x or y will be unavailable, making it impossible to perturb the
internal unknowns to compute transformations such as ỹ(y + εw) in Equation (26). We
can make the following approximation on the basis that the perturbation is small:

ỹ(y + εw) ≈ ỹ(y) + ỹ(εw) (59)

We must know how to compute ỹ(εw) to use this approach, but in many cases the transfor-
mation ỹ will reside within the black box along with y, making this approach impractical.
We can always perturb the transformed variable itself, however, so a better approach is to
switch over to x̃, ỹ as the variables in the outer iteration, namely

f(x̃, ỹ) = 0 (60)

g(x̃, ỹ) = 0 (61)

The method is written exactly as before, with the substitutions

x̃(k) → x(k) (62)

ỹ(k) → y(k) (63)

The only practical implication for implementation of the method is that x̃ and ỹ are per-
turbed instead of x or y. Any underlying differences are hidden within the abstract solvers,
so the method should remain quadratically convergent, barring a pathological variable trans-
formation.

When the subproblem domains intersect only along a shared boundary, the data shared
between subproblems is typically related to matching conditions, such as continuity of
temperature and heat flux, that are one order lower in spatial dimension than the problem
from which these conditions are derived. As an example, if x and y are the solutions to
a two-dimensional heat transfer problem, x̃ and ỹ will be one-dimensional boundary data
for temperature and flux. In this case using a transformed variable in place of its primitive
counterpart reduces the size of the Schur matrix S by at least one order of magnitude. In
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terms of the method, boundary data shared this way fully characterize the subproblem from
which they are derived. Thinking then of the boundary data as a perfect representation
of the global data on a much smaller subspace consisting only of the most relevant vector
directions, it seems likely that the number of Krylov vectors needed to adequately represent
S will also be reduced. Since the cost of an ABN iteration is approximately proportional
to NK , the potential savings is large. This argues in favor of basing the implementation on
the transformed variables, whenever doing so substantially reduces the size of S.

3.6 Historical perspectives

There have been several key historical developments for block approximations to Newton’s
method. In this section, we elucidate the ideas behind these methods and point out their
differences. The pragmatic reader may choose to skip this section and continue to the ex-
ample problems; however, we believe that such background is important to fully appreciate
the theoretical underpinnings of the methods developed here.

3.6.1 The methods of Chan and of Artlich and Mackens

Chan [12] and Artlich and Mackens [13] both apply block elimination directly to the Newton
step in Equation (30), without the preconditioning step in Equation (31). The Schur matrix
and its right hand side are defined differently than in Equations (33) and (34), leading to
these forms:

SANM ≡ gy − gxC (64)

rANM ≡ g + gxq (65)

where C and q are defined as previously in Equation (35). These forms lack premulti-
plication by g−1y introduced by the preconditioning step, without which there is difficulty
introducing the fixed-point solver form of Equation (12) to the right hand side of these
equations, as was done in deriving Equations (46) and (47) above.

Chan was interested primarily in arclength continuation methods, for which subproblem
g consists of a few constraint equations applied to control the parameters of subproblem f . In
this situation, g and its Jacobian blocks gx and gy can be computed directly, but knowledge
of f is restricted to its fixed-point solver. Then, to compute S and r in Equations (64) and
(65), it is only necessary to find q and C, after which Equation (36) is solved directly
to determine ∆y. Chan introduces a fixed-point solver to solve for q, just as above, and
derives an approximation to the columns of C identical to Equation (51) with w replaced
by ej . Chan’s approach to deriving this equation differs significantly from the approach
taken here, however, a point we return to below.

Artlich and Mackens sought to extend Chan’s method to systems in which both sub-
problems are large, at least thousands of variables, for which it is infeasible to calculate
every column of C. Introducing a Krylov projection-based solver mitigates this problem by
reducing it to computing Cw for NK Krylov vectors in place of every column of C.

Artlich and Mackens calculated q the same way that Chan did and might have adapted
Chan’s result to calculate Cw as well. Instead, they chose Equation (40) as their starting
point. They note that Equation (40) is an exact Newton step at position (x̃, ỹ) to solve
f(x̃, ỹ + εw) − f(x, ỹ) = 0 for x, where extra care has been taken to denote by the tilde
which variables remain fixed during this step. This problem is equivalent to an iteration on
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f(x, ỹ) with f(x̃, ỹ + εw) held fixed, which leads to:

Cw ≈ 1

ε

[
f−1x (x̃, ỹ)f(x̃, ỹ + εw)− x + F(x, ỹ)

]
(66)

where Equation (11) has been used to replace the second term on the right hand side of
Equation (40), the same as we did earlier in deriving Equation (51).

At this point they introduce the following restrictive relationship:

f = x−F(x,y) (67)

which states that the residuals of subproblem f are equal to the negative of the Jacobi update
of solver F . They assert this relationship on the basis that both sides of the equation have
the same solution, i.e. if f(x,y) = 0, then x − F(x,y) = 0 also. But this relationship is
correct only when f−1x = I (cf. Equation (11)), an approximation that will be wrong to
first order except under very special circumstances. Invoking this relationship makes the
Jacobian inverse simply disappear from Equation (66), with the result that

Cw ≈ −1

ε
[f(x̃, ỹ + εw) + x−F(x, ỹ)] (68)

A similar argument is invoked to swap each instance of the residuals g with its fixed-point
solver G by the relationship

g = y − G(x,y) (69)

to derive expressions for Sw and r. These expressions are not necessarily wrong, but are
arrived at by an ad hoc argument that lacks generality.

Equation (68) and other steps in the algorithm require evaluation of the residuals,
restricting it to applications that allow access to these values. For this reason the method
was not considered in our tests below.

3.6.2 The method of Matthies and Steindorf

Matthies and Steindorf [15] avoided the pitfalls encountered by Artlich and Mackens by
adopting an indirect approach to solving Equation (30). Their method is to approximate
a Newton step of a system based on the residuals of the fixed-point solvers themselves,
∆Fx(y) = 0, ∆Gy(x) = 0 (Equations 9 and 10), which they note have the same solutions
as f and g. This Newton step is written:[

[x−F ]x −Fy

−Gx [y − G]y

] [
∆x
∆y

]
= −

[
x−F
y − G

]
(70)

The resemblance of the lower component of the right hand side to Equation (18), the starting
point of our derivation of the ABN method in Section 3.2, should not be overlooked. Also
notable is that Chan’s derivation of Cej , alluded to above, is based on the same operations
appearing in the upper blocks of Equation (70), even though his starting point was Equation
(30). These observations emphasize the ever-present role of the fixed-point solver forms in
this family of methods.

Matthies and Steindorf factorize this system using block elimination, and, by straightfor-
ward finite differences, obtain Equation (51) for Cw, Equation (49) for r, and an expression
for Sw that differs slightly from Equation (52), namely:

Sw ≈ w − 1

ε
[G(x− εCw,y + εw)− G(x,y)] (71)
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The Jacobian blocks are never formed, but are purely conceptual. When a solver of the
fixed-point forms is needed, the solver of the original equations is used in its place, e.g. the
solver for f = 0 is used to solve the problem x−F = 0 and so on.

From these results Matthies and Steindorf outline an algorithm similar to the ABN-J
algorithm in Section 3.3, except that the y unknowns in Equation (71) are perturbed by εw,
something not done in Equation (52). A Taylor expansion in y applied to G(x− εCw,y +
εw) about the point (x,y) shows that this perturbation introduces a term proportional to
[g−1y ]yg that vanishes quadratically. Not only can this term can be neglected, somewhat
simplifying the method, its inclusion can lead to inferior performance of the method in
certain cases, as we show in the examples below.

To better understand the relationship between our derivation and that of Matthies and
Steindorf, we insert the exact Newton solvers of Equations (11) and (12) into the Jacobian
of Equation (70) and apply the chain-rule to obtain:[

[f−1x f ]x [f−1x f ]y
[g−1y g]x [g−1y g]y

]
=

[
[I− [f−1x ]xf ] [f−1x fy + [f−1x ]yf ]

[g−1y gx + [g−1y ]xg] [I− [g−1y ]yg]

]
(72)

Terms with second derivatives, such as [f−1x ]xf , vanish quadratically. Dropping these terms
produces Equation (31), the starting point of our derivation in Section 3.3. Matthies and
Steindorf do not formally neglect these terms in deriving their method, but achieve an
equivalent result by using solvers based on f and g to compute the solution to the fixed-
point forms in Equation (70). The extra perturbation of y in Equation (71) persists as an
artifact of this approach, however.

Matthies and Steindorf [15] note that the fixed-point equations are numerically better
conditioned, because “they implicitly already have the effect of the single system solvers in
them.” Equation (31) explains this observation in terms of an explicit preconditioning by
exact Newton solvers on the subproblems. This inexact Newton preconditioning leads to a
strongly diagonal Schur matrix that can be well-represented by a projection onto a few vector
directions. Hence, we expect that a Krylov subspace-based method will require relatively
few Krylov vectors w to converge for our formulations (via the solution of Equations 25
and 50), a conclusion that is supported by example results presented below.

4 One-dimensional heat transfer example

We begin our evaluation of the ABN method by using it to solve a steady-state, one-
dimensional heat transfer problem intended to mimic lateral heat transport at the crucible
wall in a melt crystal growth system. Pandy and coworkers [5, 7] found that block Gauss–
Seidel iteration performed poorly for this problem, often failing to converge at all. Derby
et al. [8] showed that under-relaxed BGS iterations were equally ineffective applied to this
same problem. We show here that ABN iteration dramatically outperforms BGS iteration,
converging in all cases at a small fraction of the computational effort. This example is also
used to illustrate how the ABN method can be applied to transformed variables when the
effect of one subproblem on the other subproblem is reduced to its boundary data, in this
case temperature and heat flux.

4.1 Model equations

The global model is partitioned into two subdomains: Ω1 (0 ≤ x ≤ 1) is a simple one-
dimensional analog of a crystal melt and Ω2 (1 ≤ x ≤ 2) is a similar analog of a crystal
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growth furnace. The model is described in detail elsewhere [5, 7]; we simply repeat the
non-dimensionalized equations developed there. Heat transfer occurs by conduction and
convection in Ω1 and by conduction in Ω2:

d2T

dx2
− Pe

dT

dx
= 0 in Ω1 (73)

κ
d2T

dx2
= 0 in Ω2 (74)

where T is temperature, x is length, κ is thermal conductivity ratio, and Pe is Peclet
number. These subdomains and their model solutions will constitute the subproblems of
the ABN iteration, of course.

Dirichlet boundary conditions are specified on the external ends of the system, x = 0
and x = 2:

T = TL at x = 0 (75)

T = TR at x = 2 (76)

It is also necessary to furnish a boundary condition to each subproblem at the boundary
separating Ω1 and Ω2. Applying temperatures, for example

T = T1 at x = 1 in Ω1 (77)

T = T2 at x = 1 in Ω2 (78)

yields the solutions [7]:

T =
(T1 − TLePe) + (TL − T1)ePex

1− ePe
in Ω1 (79)

T = (TR − T2)(x− 2) + TR in Ω2 (80)

Radiation effects are incorporated in the model by treating the subdomain Ω2 as transparent
to radiation, with the boundary at x = 1 exchanging radiation with the boundary at x = 2.
With this provision, fluxes at the shared boundary are given by inserting the solutions into
the following expressions:

Q1 = − dT

dx

∣∣∣∣
x=1−

(81)

Q2 = −κ dT
dx

∣∣∣∣
x=1+

+ Rd(T 4
2 − T 4

R) (82)

where Rd is radiation number.
Up to this point, the subproblems have been solved independently, assuming that T1

(or T2) is given at x = 1. To obtain a globally consistent solution we must construct an
iteration that matches temperature and flux at the boundary separating Ω1 and Ω2:

T1 = T2 (83)

Q1 = Q2 (84)

We desire to solve the problem in a segregated manner, with Equations (79) and (80) serving
as solvers to the subproblems. In the next section we describe a procedure to do this using
the ABN method of Section 3.2.
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4.2 Iteration procedures

We assume that the solutions in each domain can be used to compute a heat flux at the
boundary given a temperature there, or vice-versa, but are otherwise inaccessible. This sort
of black box scenario is typical, particularly when using commercial codes. For example, we
might use Equation (81) to compute the flux from the temperature in Ω1, which we denote
Q1(T1). The same equation can be rearranged to compute T1(Q1) instead. Similarly in Ω2

we can compute either Q2(T2) or T2(Q2) using Equation (82).
The boundary temperature and flux are transformed variables in the sense described in

Section 3.5. In a practical scenario, these variables are likely to be computed using heat
transfer codes based on discretized solution of transport equations. The internal solutions
maintained by these codes are unlikely to be available, so the practical approach is to
construct the ABN iteration around the transformed variables. This is done using the
matching conditions in Equations (83) and (84), which at convergence must be satisfied.
The unknowns of the global iteration are designated Qm and Tm, which must satisfy the
relationships

Qm = Q1= Q2 (85)

Tm = T1 = T2 (86)

The ABN method begins with a BGS step, which can be arranged several ways. Using Q1

and T2 as fixed-point solvers, for example, the iteration can be written:

Q(k+1)
m = Q1(T

(k)
m ) (87)

T (k+1)
m = T2(Q

(k+1)
m ) (88)

These are just Equations (22) and (23) with x ≡ Qm, y ≡ Tm. These same solvers might
be applied in reverse order, as well, with x ≡ Tm, y ≡ Qm:

T (k+1)
m = T2(Q

(k)
m ) (89)

Q(k+1)
m = Q1(T

(k+1)
m ) (90)

We refer to these formulations as coupling configurations and denote them Q1-T2 and T2-Q1,
respectively. By swapping the roles of the domains, i.e. using Q2 and T1 as solvers, two
other coupling configurations are obtained, denoted T1-Q2 and Q2-T1.

After the BGS step is completed by any of these coupling configurations, the matrix
S is computed using Equations (26) and (27). Since S is simply a scalar in this example,
these equations are used with w = 1, and a Krylov-based solver is unnecessary. Once S is
known, the solution updates are computed by Equations (28) and (29).

The coupling configurations used here have some differences that warrant commenting
on before proceeding to the results. One difference is whether the first step of the method
requires Tm or Qm as its initial guess; this is determined by the order in which the solvers are
evaluated in the method. Another difference is whether the solvers are exact. The solution
in Ω1 is linear, making it easy to form exact solvers for both Q1(T1) and T1(Q1). In contrast,
the flux-temperature relationship in Ω2 is nonlinear due to radiation heat transfer. Although
Equation (82) is an exact solver for Q2(T2), it cannot be factorized easily to obtain an exact
solver for T2(Q2). Instead we use local Newton iteration to compute T2(Q2) when needed.
This treatment adds realism to the example and allows studying the effects of subproblem
iteration on convergence of the global iteration. The implications of the initial guess and
differences in the behavior of the subproblem solvers will be explored in the next section.
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4.3 Results and discussion

BGS and ABN algorithms were tested to study their convergence behavior for each of
the four coupling configurations just described. Parameter values representative of a melt
crystal growth system were used in the model equations: Pe = 9, κ = 0.1, T0 = 0.98,
and T2 = 1. Iterations were deemed converged when the update satisfied the criterion
|∆y| < 10−6. A finite-differencing parameter ε = 10−4 was used in the ABN algorithm
for the results shown; the effect of varying this parameter in the range 10−3–10−7 proved
insignificant.

Figure 2a shows the effect of radiation heat transfer on the number of iterations required
by the BGS algorithm to converge. Values ranging from Rd = 0 (linear) to Rd = 10 (highly
nonlinear) are considered. Coupling configurations based on T1 and Q2 converge only
at low values of Rd, regardless of order in which the solvers are evaluated. Conversely,
configurations based on T2 and Q1 converge only at high values of Rd. Convergence is very
slow at intermediate values of Rd regardless of the configuration used. We conclude that
BGS iteration is largely a failure for this problem.

In contrast, the ABN method converges in 3 to 4 iterations for all values of the radiation
number, equivalent in effort to 8 to 10 BGS iterations for this problem (based on five solver
evaluations per ABN iteration versus two per BGS iteration). A typical convergence history
is shown in Figure 2b, for Rd = 5.67, using the configurations based on T1 and Q2, both
of which are exact solvers. Note that all BGS iterations diverge for this case, while the
ABN method converges quadratically. Order of solver evaluation (i.e. T1-Q2 versus Q2-T1)
is unimportant here.

Order of solver evaluation does matter for the T2-Q1 and Q1-T2 configurations, however,
as shown in Figure 3. Here the T2 solver consists of a local Newton iteration applied to
solve Equation (82). The T2-Q1 configuration (Figure 3a) is sensitive to the number of
these subiterations, but the Q1-T2 configuration (Figure 3b) is not. In the former case, the
iteration is seeded with an initial guess Qm = 0, whereas in the latter the iteration starts
from Tm = 1 (these are most plausible initial guesses for each formulation, in our opinion).
Interestingly, for the T2-Q1 ABN case shown in Figure 3a, the algorithm begins with Qm

as input to the nonlinear solver T2, and convergence is slightly compromised for the initial
guess made here (see the iteration history marked by square symbols). This effect vanishes
if we use our foreknowledge of the solution to select a better initial guess for Qm, but it also
vanishes if the T2 solver is subiterated more than once, at which point it becomes nearly
an exact solver (see the iteration history marked by circles). As shown by the convergence
history for the ABN method in Figure 3b for the Q1-T2 configuration, the starting value of
Tm is unimportant, because Q1 is an exact solver, the output of which is independent of
initial guess. In all cases, the BGS method converges, though relatively slowly.

Two lessons are learned from the ABN method results shown in Figure 3. One is that
subiteration of a subproblem solver can accelerate convergence in some situations, albeit at
a computational price (though it can be harmful in other situations, as shown below). The
other is that order of evaluation of the solvers, though it should not affect the asymptotic
convergence properties of the algorithm, can be important for strategic reasons related to
initial guesses for the subproblem solvers. Some judgement and experimentation may be
necessary to determine the most effective coupling configuration in a given situation, though
any of them may be quadratically convergent. The issue of convergence rate outside the
quadratic zone is an important one that will be taken up in the next test cases.
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5 One-dimensional heat transfer example revisited

The conjugate heat transfer problem of Section 4 is revisited here in a slightly different form
to compare and contrast the convergence behavior of the various block Newton variants
discussed above. All perform well compared to BGS iteration, but some differences are
observed, particularly with regard to behavior outside the asymptotic zone of quadratic
convergence.

5.1 Model equations

The model equations are the same as outlined in Section 4.1, except that the matching
conditions of Equations (83) and (84) are replaced by an equivalent form

αQ1 = αQ2 + (1− α)(T2 − T1) (91)

βQ2 = βQ1 + (1− β)(T1 − T2) (92)

where α and β are arbitrary parameters that allow tuning of the fixed-point iterations. These
were termed coupling parameters and were successfully employed to coax convergence from
a BGS implementation of a coupled crystal growth model in [6]. Subsequent analyses [7,8]
demonstrated, however, that this approach alone was insufficient to overcome the poor
convergence properties of the BGS method, hence motivating the work presented here.
Note that the case α = β is singular and to be avoided. The cases α, β = (0, 1) and
α, β = (1, 0) recover Equations (83) and (84).

The examples studied in the previous section suggest that the ABN method is affected
only slightly by the coupling configuration chosen; we desire to test this observation more
thoroughly, however, so we return to this formulation with the notion that every α, β pair
constitutes a different coupling configuration.

5.2 Iteration procedures

To more thoroughly test the coupling algorithms, we arrange this formulation into an it-
eration in which the fixed-point solvers intentionally do not satisfy the special form of
fixed-point solvers in Equations (15) and (16). To do this we substitute the solutions given
by Equations (79) and (80), together with the flux definitions in Equations (81) and (82),
into Equations (91) and (92). The result is rearranged into the following residuals:

r1 = T1 − a− bT1 − cT2 + RdT 4
2 (93)

r2 = T2 − a− dT1 − eT2 + RdT 4
2 (94)

where

a = fTL + κTR + RdT 4
R b = −1− α

α
− f c =

1− α
α
− κ

d = −1− β
β
− f e =

1− β
β
− κ f = − Pe ePe

1− ePe

These nonlinear equations are solved locally by Newton iteration: Equation (93) is iterated
for T1, with T2 as input, and Equation (94) is iterated for T2, with T1 as input. The local
Newton steps of these iterations represent the subproblem solvers for the various coupling
algorithms tested.

20



5.3 Results and discussion

All results were computed with Rd = 5.67, and all other parameters the same as in Sec-
tion 4.3. Varying the finite-differencing parameter ε in the range 10−3–10−7 again had no
significant effect on the outcome.

Figure 4 shows the effect of α, β on the convergence of the BGS and ABN iterations.
These parameters were each varied from 0 to 1 by increments of 0.01, resulting in a total
sample of 10 201 pairs. Shaded regions represent α, β pairs for which iteration fails to
converge within 1000 iterations (nearly all of which are divergent). Approximately half of
all BGS iterations never converge, and those that do require 105 iterations on average. The
results reinforce the lesson that BGS iteration performs poorly for this type of problem. In
contrast, all cases of ABN iteration converge within 4 iterations, except for the α = β cases
(the shaded diagonal in the figure), which, as noted above, are ill-posed.

The performance of the method of Matthies and Steindorf (MS) [15] is examined for
various cases in Figure 5 for the same problem considered previously. Figure 5a shows the
case when a good initial guess, Tm = 1, is employed and the total number of iterations is
limited to 10. Most cases converge within 5 iterations, but a small number of stubborn
cases converge more slowly. Approximately 1% of cases require more than 10 iterations, up
to 70 iterations in the worst case. Approximately 0.5% of the cases converged to a second
root of the problem, a behavior that was not observed for the BGS or ABN algorithms.

Figures 5b and 5c show what happens to the MS method if a rather poor initial guess
is used to start the iteration, in this case Tm = 0, as compared to Tm = 1 used in the
case shown in Figure 5a. A mere 11% of cases converge within 10 iterations; see Figure
5b. The success rate improves when up to 50 iterations are allowed, as shown in Figure
5c; however, a significant number of cases, approximately 12%, remain unconverged. After
1000 iterations, the MS iteration converges to the first root in 61% of the cases and to the
second root in 30% of the cases. The remaining 9% are those cases that diverge using this
algorithm. In contrast, the ABN and ABN-J methods converge to the first root within 8 or
fewer iterations, starting from the same initial guess of Tm = 0, in all cases with α 6= β.

Figure 6 sheds some light on the different behaviors exhibited by each of the block
Newton-type methods by plotting the update norm as a function of iteration for the specific
case of α, β = (0.8, 0.2) and for the good and poor initial guesses. Figure 6a shows that all
the methods converge quadratically from the second iteration onward when starting with
a good initial guess Tm = 1. Figure 6b shows that a poor initial guess affects the methods
differently, however. Under this condition, the ABN and ABN-J methods outperform the
MS method, with an update norm that diminishes quickly and monotonically, reaching the
quadratic regime by the fifth iteration. The update norm for the MS method wanders,
rising and falling before reaching the quadratic regime after nine iterations.

Figure 7 attempts to quantify the issue of convergence success by plotting the fraction
of all α, β pairs converged as a function of the maximum iterations allowed for the different
methods tested here. Figure 7a summarizes the results of Figures 4 and 5, showing that
the ABN and ABN-J methods perform extremely well, converging within 8 iterations in all
cases, whereas convergence of the MS method is slow for most α, β pairs and is unsuccessful
in a significant number of cases, even after very many iterations.

Figure 7b shows the results of iteration schemes that subiterate twice per global iteration.
It was shown earlier, in regard to Figure 3, that this strategy sometimes reduces the number
of global iterations. Here the effects are largely deleterious. The MS method converges
slightly more often, whereas the ABN and ABN-J methods are made significantly worse.
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Some α, β pairs no longer converge, and a moderate number of other pairs now converge
to the second root (9% for the ABN method and 12% for the ABN-J method, as compared
to 35% for the MS method). Increasing the number of subiterations per global iteration
degrades performance further, in terms of total cases converged, for all the methods.

The iteration behavior for individual α, β pairs is not as simple as Figure 7b might
suggest, however. Whereas increasing the number of subiterations causes many new α, β
pairs to diverge, some pairs are helped by additional subiteration. The α, β = (0.18, 0.26)
case, for example, converges if three or more subiterations are executed per global iteration,
whereas it diverges if only two subiterations are executed. At issue here is whether the
nonlinear subproblem solver is contractive or not at the initial guess given. Tests performed
using up to 30 subiterations per global iteration showed that the nonlinear subproblem is
locally contractive for an initial guess Tm = 0 for only a slight majority of α, β pairs. The
global iteration converges for 98% of these pairs, provided the subproblem is subiterated
all the way to convergence. Subiterating just a few times is not adequate to achieve local
convergence, however, which can cause the global iteration to fail in some cases.

In contrast, those cases for which the nonlinear subproblem is non-contractive are always
harmed by additional subiteration. What is perhaps most interesting is that all of these
cases do converge by the ABN and ABN-J methods if subiterated only once. This outcome
is consistent with Chan’s [12] convergence analysis of his ANM method, in which he shows
that the global iteration can converge despite a non-contractive subproblem solver.

6 Two-dimensional convective heat transfer example

While the one-dimensional problems of the prior sections were useful to consider many issues
involving problem formulation and iteration performance, they are admittedly very simple.
In this final results section, we consider a more realistic two-dimensional representation of
heat transfer in melt crystal growth systems. Figure 1 shows a simplified schematic depicting
a crystal growth process divided into subproblems representing furnace and growth chamber,
which are coupled via conjugate heat transfer conditions. A highly detailed model of such a
system was presented in our earlier work on solver coupling [6,7]. Here we study a simplified
system consisting of a cylinder within a cylinder, deferring analysis of the full system to a
future paper. Nevertheless, the example studied here is sufficiently rich in detail to provide
a substantial test of the ABN method.

6.1 Model equations

The model of the growth chamber (domain Ω1) represents heat and momentum transport in
a high-temperature liquid. Convective-diffusion and incompressible Navier-Stokes equations
for this problem can be written [18]:

∇2T − u · ∇T = 0 (95)

1

Pr
u · ∇u +∇p−∇ · (∇u + (∇u)T )− Ra(1− T )g = 0 (96)

∇ · u = 0 (97)

where T is temperature, p is pressure, and u is velocity, all dimensionless. The Prandtl
number Pr is set to unity, characteristic of many II-VI semiconductor melts. The magni-
tude of the Rayleigh number, Ra, scales the intensity of buoyant thermal convection. The

22



equations are solved in 2D axisymmetric coordinates r, z. Except for the symmetry axis,
the boundary is shared with the other domain and is meant to represent the chamber wall.
A condition of zero flow velocity is imposed there, and heat transfer conditions are supplied
by the matching process described in detail below.

The model of the furnace (domain Ω2) is greatly simplified, consisting essentially of a
high-temperature heat bath in which heat transfer is by conduction only:

κ∇2T = 0 (98)

where κ is thermal conductivity ratio. A destabilizing thermal gradient is imposed by
applying a hot temperature at the bottom surface, a low temperature at the top surface,
and zero heat flux on the side surface of the domain. The dimensionless temperature
difference is unity; the actual magnitude is embodied in the Rayleigh number.

6.2 Iteration procedures

Two separate computer codes are employed to compute the subproblems. The growth
chamber model is solved using Cats2D [19], our finite element-based multiphysics transport
code, on a structured mesh of nine-noded quadrilateral elements. The heat bath model
is solved using CrysVUn [20–23], a commercial finite volume-based heat transfer analysis
code, on an unstructured mesh of triangles. Both codes use Newton iteration in conjunction
with a linear equation solver to compute their respective solutions.

The ABN algorithm is implemented inside Cats2D, to which CrysVUn is linked as a
compiled library. Access to CrysVUn is limited to computing heat flux at the boundary in
response to changing its Dirichlet temperature boundary condition, making it essentially a
black box of the Q2(T1) type (in the sense of Section 4.2). Variables exchanged between
the codes are interpolated using a third-order piecewise fit of discrete data along the shared
boundary. With the ABN approach implemented here, the Schur problem is solved using
GMRES [24] without preconditioning.

As in the previous example, the fixed-point solvers of the coupled iteration are based on
Equations (91) and (92). The temperature computed by Cats2D at the shared boundary
is imposed as a Dirichlet temperature condition on the CrysVUn heat bath calculation,
equivalent to Equation (91) with α = 0. The boundary heat flux returned by CrysVUn is
used by Cats2D in Equation (92), with β = 0.9. The equation is divided by β and imposed
on Cats2D as a weak boundary condition in the finite element sense.

Our purpose in choosing β = 0.9 rather than β = 1 is to avoid specifying a pure
flux boundary condition everywhere at the boundary. To do so would leave the Cats2D
problem underspecified: with T appearing only in the form of its derivatives in the governing
equations, the solution can be shifted by an arbitrary constant and remain a valid solution.
By setting β 6= 1, the Cats2D problem is well specified, and a consistent temperature level
is enforced between the subproblems.

Per the issues discussed in Section 3.5, rather than view the problem as one of matching
Q and T at the boundary, it is more natural to consider the transformed variables, x̃ ≡
αQ + (1 − α)T and ỹ ≡ βQ + (1 − β)T , and view the problem as one of matching x̃ and
ỹ at the boundary. The case considered here, α = 0, β 6= 1, reduces to x̃ = T1 and
ỹ = βQ2 + (1− β)T2. Cats2D generates x̃ = [x̃i] as its output, in the form of T1 evaluated
at some points i along the shared boundary in Ω1. Similarly, CrysVUn implicitly generates
ỹ = [ỹj ] as its output, computed from T2 and Q2 evaluated at some points j along the
shared boundary in Ω2. These transformed variables form the basis of the ABN iteration.
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Though CrysVUn is a solver of type Q2(T1), in order to compute ỹ it must also be
viewed to return T2, at least in an abstract sense. Of course this is simply the value of
the Dirichlet condition T1 that was imposed on CrysVUn to begin with, but the distinction
between T1 and T2 is not trivial. Because x̃ and ỹ are independent variables, by implication
T1 and T2 are also independent of one another, even though we state that T1 = T2 by setting
α = 0 in one of the coupling conditions. Of course this condition is satisfied at convergence,
but perturbations of x̃, with ỹ held constant, and vice-versa, result in a non-zero value of
(1− β)(T1 − T2) in the Cats2D matching condition.

6.3 Results and discussion

All cases are computed with κ = 2, based on growth chamber conductivity of 1 W/m2 and
bath conductivity of 2 W/m2. The temperature difference between top and bottom of the
heat bath is taken to be 50 K. Two Rayleigh numbers are considered: Ra = 0, for which flow
is zero, and Ra = 6× 103, for which a buoyant flow occurs. Iterations at Ra = 0 are started
with the solution initialized to zero. At Ra = 6 × 103, the Cats2D problem is sufficiently
nonlinear that Newton’s method will not converge from a zero initial guess. The solution
is reached instead by a parameter continuation method, in which iteration is started from
a converged solution computed at the lower value Ra = 1 × 103. The finite-differencing
parameter is ε = 10−4 in all calculations. The dimension of the Schur problem is 185, which
is the number of points j along the boundary at which CrysVUn outputs its heat flux. In
comparison, the problem in Ω1 solved by Cats2D is discretized by 7883 unknowns, and the
problem in Ω2 solved by CrysVUn is discretized by 1047 unknowns.

Figure 8 shows temperature contours and streamline contours at Ra = 6×103. Isotherms,
shown in growth chamber and bath, are spaced at temperature intervals of 1 K. Dashed
streamline contours indicate clockwise flow and solid streamline contours indicate counter-
clockwise flow. The flow consists of a pair of co-rotating toroidal vortices. The flow struc-
ture, though unremarkable, represents a typical situation of convective heat-transfer by
thermal buoyancy in melt crystal growth systems.

Figure 9 shows temperatures and heat fluxes computed by both codes at the shared
boundary for both values of Ra considered. Temperature contours in the melt appear little
affected by the flow, but the impact on heat flux at the boundary is quite large. The
temperatures reported by the two codes agree to within a small interpolation error between
the subproblem grids. The fluxes are nearly indistinguishable, too, except at the corners
where the cylinder side meets the top and bottom. The cause of the local disagreement is a
post-processing error: the flux reported by the codes on output represents a local, pointwise
differentiation of the temperature field that is not identical to the flux that would be applied
in a boundary condition to achieve the identical solution. This discrepancy, ordinarily small,
can be quite large at corners where a discontinuity in the normal vector makes the heat flux
ill-defined. Cats2D uses a special procedure [25] for post-processing accurate fluxes at the
corners, but CrysVUn does not, leading to the apparent discrepancy in the flux plots.

Figure 10 shows the update norm versus iteration for both values of Ra considered. The
effect of Krylov subspace size is studied by varying NK . Both problems diverge under BGS
iteration (not shown), but converge under ABN iteration provided NK ≥ 2. The linear
case at Ra = 0, shown in Figure 10a, is expected to converge in a single iteration by exact
Newton iteration. A comparable result is achieved with NK = 18, which reduces the update
norm by 10 orders of magnitude in a single iteration. The method performs nearly as well
with NK = 14 and NK = 10, both of which reduce the update norm below 10−5 in a single
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iteration. Figure 10b shows the nonlinear case for Ra = 6×103. The method performs well,
and convergence is quadratic with NK ≥ 10. These subspace sizes are at least an order of
magnitude smaller than the dimension of S, which we believe is a consequence of the high
quality preconditioning intrinsic to the ABN method.

Optimal convergence, in the sense of minimizing ABN iterations, is achieved in these
problems by setting NK > 10, but the computational cost per iteration rises with NK . To
determine optimum behavior in terms of computational effort, we convert ABN iterations
into BGS-equivalent iterations as measured by the number of times each solver must be
evaluated per iteration (2 + NK for F and 1 + NK for G in the ABN method versus one
evaluation of each solver in the BGS method). While this is a reasonable metric with which
to evaluate computational effort, we note that the BGS algorithm itself diverges when
applied to this problem. The results are plotted in Figure 11 for both values of Ra. Two
different update norm tolerances for determining convergence are considered, |∆y|2 < 10−6

and |∆y|2 < 10−4. The lowest cost in these examples occurs when NK is somewhere between
4 and 8, which is too small to realize quadratic convergence, but large enough to achieve
superlinear convergence.

7 Concluding remarks

We have derived, implemented, and tested several block Newton methods for the modular
solution of black box models arising from the coupling of nonlinear, conjugate heat transfer
problems. These approaches offer markedly superior performance over simpler implementa-
tions that are based on block Gauss–Seidel (BGS) iterations. In particular, we identify two
new and promising approximate block Newton algorithms, termed the ABN and ABN-J
methods, that follow from prior implementations [12–15]. The performance of the ABN
and ABN-J methods is indistinguishable for the examples studied here, yielding robust
quadratically convergent solution algorithms. The method of Matthies and Steindorf also
converges quadratically, but sometimes performs poorly for poor initial solution guesses,
making it somewhat less robust than the ABN or ABN-J methods. For the larger-scale,
two-dimensional problem considered here, the ABN method proved to be robust and to
converge quadratically, provided the Krylov subspace size is large enough to solve the Schur
problem accurately.

Of the two approaches derived here, we advocate the use of the ABN method: it is
simple to derive and comprehend, it requires one less solver evaluation per iteration, and
its implementation is a natural extension of the block Gauss–Seidel method. Indeed, the
heart of the procedure, Equation (19) or (25), can be written:

∆y = S−1∆Gy(x + q,y) (99)

which makes it clear that S constitutes a mapping between the BGS step and the ABN
step.

It is interesting, though hardly a coincidence, that all three methods studied here arrive
at similar forms by different pathways. The derivation of Matthies and Steindorf starts
with a residual based on the block Jacobi step (cf. Equation 70), but block elimination to
the Schur complement form leads to the BGS form of the residual (cf. Equation 47). In
contrast, the ABN-J derivation starts with the exact Newton step instead of a fixed-point
form of the residuals; here the key to reaching the BGS form is the preconditioning in
Equation (31). Both methods arrive at Equation (99) by approximation, however, whereas
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the ABN method uses this equation as its starting point (which itself is an approximation,
in consideration of the special case outlined in Equations 15 and 16).

The difference in the methods lies in the evaluation of S, or more specifically the ap-
proximation to Sw. The ABN method uses a form based directly on Equation (99), with
no further approximation except to apply finite differences in the JFNK procedure used
to solve the Schur problem. The other methods arrive at their approximations by more
circuitous paths. The ABN-J derivation reaches a form in which the evaluation is shifted
from the ABN form by the Jacobi update q (cf. Equation 52); the methods are equivalent
at convergence, however. The derivation of Matthies and Steindorf introduces a spurious
perturbation of y, a consequence of using the subproblem solvers in place of solvers for the
fixed-point forms, which are unavailable. Their method also is equivalent to ABN and ABN-
J methods at convergence, but the spurious perturbation results in somewhat diminished
performance outside the quadratic regime.

While a significant motivation for this work has focused on quadratic convergence of the
algorithm, iteration of the two-dimensional heat transfer example was most computationally
efficient when the Schur problem was solved approximately on a small subspace, resulting in
superlinear convergence of ABN iterations. For example, Figure 11 showed that more ABN
iterations are needed to converge, but fewer solver evaluations are required at each iteration
due to the decreased Krylov subspace. A related issue arises when the subproblem solvers
themselves fail to achieve quadratic convergence. Along these lines Menck [14] has proposed
a control mechanism to optimize convergence when the subproblem solvers converge linearly
at best. Based on an ABN-type algorithm similar to that of Matthies and Steindorf, he
outlines the theory for determining optimum values of under-relaxation parameters and
convergence tolerances for the subproblems. Such an approach applied to the ABN method
could be beneficial to optimizing its performance.

Other simple cost-saving strategies exist. For example, if a direct solver can be used on
either subproblem, great savings can be realized by reusing the Jacobian to compute the
perturbed solutions. For computing

F(x,y + εw) ≈ x− f−1x (x,y)f(x,y + εw) (100)

the Jacobian inverse f−1x (x,y) could be reused for each perturbation, requiring only the
effort of back-substitution, typically much faster than refactorizing the Jacobian. This ap-
proach also improves slightly on the basic algorithm, in that it eliminates the error incurred
in adopting Equation (45) as an approximation to Equation (40). A similar consideration
applies to solver G. Along these same lines, computational effort may be even further re-
duced by employing an iterative solver for perturbation steps, such as Equation (100) above,
rather than a direct solver. Certainly an excellent initial guess for this problem is readily
available, only a perturbation ε away, with which to seed the solution iterations.

Another important performance consideration is selection of the finite difference param-
eter ε. Varying this parameter had little effect on the calculations here, which we attribute
to careful scaling of the subproblems. The scaling situation will be much less favorable in
many practical applications, however. In such cases careful selection of ε may be neces-
sary to assure accurate finite difference expressions that are neither too large for accuracy,
nor too small for numerical stability. Though we have treated ε as a constant, it may be
advantageous to set this parameter to a different value for each Krylov vector w, in or-
der to control the relative norm of the perturbation. Methods for controlling ε for JFNK
applications are discussed in Ref. [16].
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The algorithms presented here show great promise for the efficient and robust solution of
coupled, nonlinear problems of conjugate heat transfer, problems for which simpler iteration
approaches have proven ineffective. However, the outcome of this development is potentially
much broader. Such algorithms may allow for innovative ways to couple existing software
packages that have been developed to solve specific problems, especially for modeling multi-
scale and multi-physics problems. Not only will effective block Newton coupling methods
allow for significant savings of effort in software development, their increased robustness
and increased computational effectiveness will enable the study of new worlds of complex
physical phenomena via computing.
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Figure 1: Generic simplified schematic of a melt crystal growth furnace, depicting a crystal
growth process divided into submodels representing growth chamber (Ω1) and furnace (Ω2),
which are coupled via conjugate heat transfer conditions.
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Figure 2: (a) Effect of radiation number Rd on convergence behavior of BGS iteration, for
four different coupling configurations of the one-dimensional model. T2-Q1 defines X ≡ T2
and Y ≡ Q1 and Q1-T2 defines X ≡ Q1 and Y ≡ T2; in both cases T2 is computed from the
model in domain 2, and the flux Q1 is computed from the model in domain 1. Conversely,
T1-Q2 and Q2-T1 use T1 from domain 1 and Q2 from domain 2, differing only by which
variable is assigned to X in the algorithm. (b) Comparison of ABN iteration to BGS
iteration for the T1-Q2 and Q2-T1 configurations, starting with initial guess Tm = 1, at
radiation number Rd = 5.67.
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Figure 3: Comparison of ABN iteration to BGS iteration for (a) the T2-Q1 configuration
and (b) the Q1-T2 configuration, starting with initial guess Tm = 1, at radiation number
Rd = 5.67.

32



Figure 4: Effect of temperature- and flux-matching parameters α, β on convergence behavior
of (a) BGS iteration and (b) ABN iteration (ABN-J iteration produces an identical result).
Shaded regions indicate cases that fail to converge within 1000 iterations, starting with
initial guess Tm = 1, at radiation number Rd = 5.67.
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Figure 5: Effect of temperature- and flux-matching parameters α, β on convergence behavior
of the Matthies-Steindorf (MS) algorithm, at radiation number Rd = 5.67. Shaded regions
indicate cases that fail to converge: (a) within 10 iterations, starting with initial guess
Tm = 1; starting with initial guess Tm = 0, (b) within 10 iterations and (c) within 50
iterations.
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Figure 6: Update norm versus iteration, for MS, ABN-J, and ABN iterations, at α =
0.8, β = 0.2, Rd = 5.67, starting with initial guess (a) Tm = 1 and (b) Tm = 0.
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Figure 7: Fraction of cases converged versus maximum iterations allowed to reach conver-
gence, for 10 201 pair α, β sample at Rd = 5.67, starting with initial guess Tm = 0, using
(a) one and (b) two subiterations of the nonlinear subproblem in domain 2.
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Figure 8: Simulation of two-dimensional convective heat transfer for cylinder-in-cylinder
geometry: (a) Temperature contours in the bath (Ω2), and (b) temperature and streamline
contours in the growth chamber (Ω1), for Ra = 6×103. Isotherms are spaced at ∆T = 1 K.
Dashed streamline contours indicate clockwise flow, with a spacing of ∆ψ = ψmax/10, and
solid streamline contours indicate counter-clockwise flow, with a spacing of ∆ψ = ψmin/10,
and ψmax = 1.6579 and ψmin = −1.6576, dimensionless.
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Figure 9: Comparison of (a) temperature [K] and (b) heat flux [W/m2] as a function of
arc length along the shared boundary, for the cylinder-in-cylinder model with Ra = 0 and
Ra = 6× 103.
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Figure 10: The dependence of convergence rate on Krylov subspace size is determined for
the cylinder-in-cylinder model by plotting the L2-norm of the temperature update versus
ABN iteration at various values of NK for (a) Ra = 0 and (b) Ra = 6× 103.
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Figure 11: Computational effort of ABN iteration, measured in BGS-equivalent iterations,
is plotted versus size of Krylov subspace NK for (a) Ra = 0 and (b) Ra = 6× 103.
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